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Finite-dimensional Feynman-type integrals 
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International Centre for Theoretical Physics, POB 586, 34100 Trieste, Italy 

Received 26 February 1985, in final form 20 May 1985 

Abstract. Oscillatory Feynman-type integrals over finite-dimensional spaces are considered, 
together with other related conditionally convergent integrals. A representation theorem 
related to approximating integrals is presented, and the connection of Feynman integrals 
to Tauberian theorems is discussed. Some counterexamples are included. 

1. Introduction 

In the mathematical analysis of Feynman path integrals, one encounters two sources 
of complications: the integrals are over infinite-dimensional spaces, and their conver- 
gence is due to oscillatory rather than decreasing (or damping) factors. In the recent 
mathematical analysis, the first of these complications was usually approached by 
regarding the integrals as Gaussian integrals over a real Hilbert space X, which is in 
effect determined by the scalar product in the oscillatory Gaussian factor. The resulting 
oscillatory integrals have a more general form than the path integral of Feynman, and 
they, together with their variants, have been called Feynman-type integrals. 

We should like to explore here some aspects of these integrals which relate 
specifically to their oscillatory convergence. We therefore examine the simpler case, 
dim X < ~ O .  This case indeed constitutes a natural subject for study, even though it 
may have only a slight physical motivation. 

We might point out in this connection that such finite-dimensional integrals do 
occur in a physical context. In paiticular, the composition law for Green functions 
for the Schrodinger equation takes the form (where 0 < s < t ) ,  

G ( t ; y , x ) =  dkUG(s; u , x ) G ( t - s ; y ,  U). I 
The integral over U is characterised by an oscillatory convergence, and so is of Feynman 
type. Examples could also be given in which the familiar path integral for G reduces 
to a finite-dimensional Feynman-type integral. However, we will not be concerned 
further with such examples, and we regard the present paper primarily as providing 
some background for future investigations of the infinite-dimensional case. 

This paper is based on the definition of Feynman-type integrals which is given in 
Tarski (1979). For the case dim X = k < 00, this definition reduces to the following. 

t Permanent address: Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17/ 19, 
60-179 PoznaA. Poland. 
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Let K satisfy Im K 2 0, K # 0, let Re b > 0, let a E R k  be arbitrary, and let 

Z b 3 " ( f ) = [ ( b - i ~ ) / 2 ~ ] k ' 2  dku  exp[-$b(u-a,  u -a ) ] exp[ ; i~ (u ,  u)]f(u). (1.2) 

The function f :  R k  + C' is to be such that the combined integrand is in L1. Consider 
now non-tangential limits of Z b , " ( f )  as b -f 0 (i.e. along non-tangential curves). If these 
limits are equal and d o  not depend on a, then the common limit is the integral in 
question. This integral has been denoted as follows: 

( In  typical examples with integrablef; Z b , " ( f )  is bounded near b = 0. The non-tangential 
limits are then necessarily equal (Priwalow 1956 pp  18-9).) We may note that the 
integral in (1.2) remains meaningful iff  is a distribution in the class Yi$i( R k ) '  (Gelfand 
and Shilov 1968). See also the note added at the end of this paper. 

For analysis of the infinite-dimensional case one uses finite-dimensional approxima- 
tions, which have the form of (1.2). In such an  analysis it is essential to separate the 
factor [ (b  - - i ~ ) / 2 . r r ] ~ "  as above, and it is convenient to keep exp[$irc(u, U)] separate. 
However, if dim 2 < CO, then these factors can be absorbed into f :  We set, accordingly, 

r (b ,  a ; f ) =  dku exp[-$b(u-a, u - a ) ] f ( u )  (1.4) 5 
and we will denote the limit as b + 0 under the above conditions by f: 

lim r( b, a ; f) = T ( f ) .  (1.5) 
b-0 

In this paper we examine (1.2)-(1.5) from the following points of view: (i)  the 
inter-relation between f( b, a ; f )  and f (  U )  ( 9  2), (ii) the connection with Tauberian 
theorems (0 3), and (iii) the differences between f and the Lebesgue integral, as 
illustrated by counterexamples (0 4). 

We may note that finite-dimensional examples of Feynman-type integrals were 
considered on various occasions, especially in Buchholz and Tarski (1976), Tarski 
(1981) and Elworthy and  Truman (1984). The last two papers exhibit the occurrence 
of the Morse (or Maslov) index in such finite-dimensional integrals. 

The definition of Feynman-type integrals which was adopted by Buchholz and 
Tarski (1976) is a specialisation and a slight modification of that of It6 (1966). We 
will see in § 4 that these definitions are not equivalent to that specified in (1.2)-(1.5) 
(or to the infinite-dimensional extension). 

2. A representation theorem 

In this section we examine f ( b ,  u ; f )  in its dependence on b and a when f is fixed. 
We consider also the problem of determining f when a suitable r( b, a ; f) is given, i.e. 
the problem of representing f in terms of a suitable function $(b, a ) .  We first note 
three properties of 7: 
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(i) f( b, a ;f) is analytic in the region Re b 2 0, a E C k .  Let us denote f( b, i a  : f) 

(ii) The function $(b,  a )  satisfies (in the region of analyticity) 
for a fixed f by $(b,  a ) .  

[ 2 b 2 ( a / d b ) + k b ] $  = V i $ .  (2 .1)  

( i i i )  For b > 0 and  a E R k ,  $ is of the form exp[fb(a, a)]$1  where $, and its 
are Fourier transforms of L,  functions in their derivatives d$,/db, d$l/da’, $$,/a( 

dependence on a. 

Proposition 1. If f c u )  exp[-fb(u, U ) ]  E L ,  for Vb > 0, then (i)-(iii) hold. Conversely, 
if q(b ,  a )  is defined for b> 0 and a E Rk,  and satisfies (ii) (for b, a real) and (iii), 
then there exists a function f ,  uniquely determined almost everywhere, such that 
f(u)exp[-tb(u,  u ) ] E L ,  for V b > O  and $(b ,  a ) = T ( b , i a ; f ) .  

Proof: If f exp[ -ib( U, U)] E L, ,  then (i)-(iii) follow from the bounded convergence 
theorem, where for (ii) we differentiate under the integral sign. 

Conversely, let $(b ,  a )  be given, such as specified. We write (with f0€ L, ,  as a 
function of U )  

4(b ,  a )  =exp[ib(a,  a ) ]  dku exp[ib(u, a>lf,(b, U). (2 .2)  

Since the relevant derivatives of (I/ are assumed to be Fourier transforms of L ,  functions, 
we may differentiate & under the integral sign, and (2.1) yields 

exp[fb(a, a ) ]  dku exp[ib(u, a ) ] [ 2 b 2 ( a f o / a b ) +  b2(u, u)fO] = O .  (2 .3)  

The resulting equation [ . . . ]  = 0 implies that fo has the form f ( u )  exp[-ib(u, U)]. The 
function f( U )  is now determined by (2 .2) .  

I 
We remark that an alternative method of obtaining f in terms of $ depends on 
recognising ( b / 2 ~ ) ~ ’ *  exp[-$b(u - a, U - a ) ]  as the kernel of the heat equation with 
b = t - ’ .  Thus, for suitable f ,  l imlLn ( 2 ~ t ) - ~ ” $ (  t - I ,  a )  = f ( a ) .  

We remark also that the above proposition could be helpful in introducing a 
topology for Feynman-integrable functions. However, it does not seem to elucidate 
the problem of the limit as b+O in a more direct way. 

We turn to the case where f is a distribution. I n  this case the property ( i i i )  does 
not hold as stated, but suitable generalisations would allow the previous discussion to 
go through. For example, let us replace (iii) by 

(iii’) For b>O and a E Rk, 4 is of the form exp[ib(a, a)]$ , ,  where $, and its 
derivatives a$,/ab, a$,/aaJ, a2$,/a( a’)’ are polynomially bounded, as functions of a. 

We can now adapt proposition 1 and its proof to the new situation, i.e. we specify 
that f ( u )  exp[-ib(u, U)] E 9” rather than in L, ,  we replace (iii) by (iii‘), and we use 
distribution-theoretic analysis (as for example in Reed and Simon 1975, p 15 f f )  rather 
than the bounded convergence theorem. We obtain 

Corollary 2. Proposition 1 remains valid if L ,  is replaced by Y”, the property (iii) by 
(iii’), and ‘a function f. , . almost everywhere’ by ‘a unique distribution f. 
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Let us return to equation (2.1). If we set there $ = exp[ib(a, a)]$ l ,  then we obtain 
the following equation for $1: 

2b2(a/ab)+, = (2b(a, C,)+V?)$ , .  (2.4) 

Here the dimension k does not enter explicitly. This equation may therefore also 
remain applicable in infinite-dimensional situations. 

We conclude this section with a simple example which illustrates the foregoing 
notions. Let k = 1 and a = a’+ a”, and we construct the following expansion, which 
is valid for Re b > 0: 

+b1(b, a’+”’) = E  c,(b, a’)(iba’‘)’’/n!. (2.5) 

We observe that 

du exp(-$u2) exp(iba’u)f(u)u” 

which implies 

abeo= -ic,+ia’c, (2.7) 

and in fact this equation is a special case of (2.4). 

least) ia’= /3 E RI, and we obtain 
If f ( f ( u ) u “ )  exists for n = 0, 1, 2, then the limit as b+O in (2.7) is possible for (at 

abf(b, P ; f ) b = O =  f ( - $ ( u - P ) * f ( u ) ) .  (2.8) 

Here the derivative is in the sense of a non-tangential limit. 

3. Feynman-type integrals and Tauberian theorems 

Tauberian theorems relate to limits like the following: 

lim Joe d t  exp(-t/x)f(t) 
x-m 

and in many formulae there is an additional factor x-’ in front of the integral. Similarity 
to the Feynman integrals is striking, and the latter integrals can be trivially reduced 
to limits as in (3.1). However, the passage in the opposite direction requires some 
additional discussion. 

The analysis of Dunford and Schwartz (1963) shows that if f(t) and @ ( t )  are 
bounded, and the limit in (3.1) exists, then 

I-= r x  

lim J dt  exp(-t/x)f(t) = lim J dtf( t ) .  
x-CO x-m 

(3.2) 

(We note that we have to eliminate cases where f is a distribution and not a function.) 
Some simple remarks were made in Buchholz and Tarski (1976) and Tarski (1976) 
concerning (3.2) and its connection with Feynman integrals. We summarise the 
situation as follows. 

Lemma 3. (a )  Both limits in (3.2) exist, and the equation is valid, if one of these 
conditions is fulfilled: ( a , )  f(t) and t f ( t )  are bounded, and the LHS exists; or (a2) 
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f( t )  exp(-t/x) is in Ll for Vx > 0, f has a finite number of changes of sign in any 
finite interval, and the RHS exists. ( b )  Let g:  R k  + C' be such that f ( g )  exists and such 
that rkg( U )  and rk-2g( U )  are bounded, where r2 = Z j  (U')'. Then 

R 

f ( g )  = lim jo d r  rk-l Isk-, dk-' Rg(r, R) 
R-CC 

(3.3) 

where R refers to the angular variables. 

The proof of part ( a 2 )  is elementary. We will refer to this part in the subsequent 
discussion. 

We turn to the problem of establishing a criterion for Feynman integrability in 
terms of limits like (3.1). For simplicity we will confine ourselves here to integration 
over RI. We recall that for Feynman integrability, we have to allow the parameter 
b = x-' to be complex, and to incorporate the shift vector, or parameter, a. 

The parameter a gives the approximating integrals the form of a convolution in 
RI, while the parameter 6, when real, relates to a convolution in R:.  It is therefore 
tempting to analyse the Feynman integral in terms of convolution algebras. We will 
not attempt such a study here, but rather we will prove proposition 4 below with the 
help of an elementary estimate. Our first step is to extend limits like (3.1) to complex 
parameters. 

Lemma 4. Let f, g E L,( RI) ,  let uf( U )  be bounded, and let a E RI. Then 

lim x-' lom d t  exp(-t/x)g( t )  = lim(1 +ia)x- '  
x-m X-30 I: 
pliz lo ds exp(-s/x)f(s)= lim ds  exp[-( l+ia)s /xlf(s) .  (3.5) 

x-m ID' 
d t  exp[-( 1 + ia) t /x ]g(  t )  (3.4) 

m 

In each equation the existence of one limit implies that of the other and the equality. 

ProoJ: For (3.4), we follow Dunford and Schwartz (1963) (cf also the discussion in 
Wiener (1964)). Contour integration yields, for a E RI, 

lom (dt/  t )  exp(-t)t'" = T(ix) = (1 + ia)'" (dt /  t )  exp[-( 1 + ia)t]t'". (3.6 a, b ) 

But T(ix) f 0. Therefore, if the LHS of (3.4) exists, ( 3 . 6 ~ )  yields the desired conclusion, 
while if the RHS exists, (3.66) can be similarly applied. For (3.5), we first observe that 
the assumed existence of one limit and the assumed bounds imply that F (  t )  = 5; dsf(s)  
is bounded, cf Dunford and Schwartz (1957, 1963). By inserting g (  t )  = F (  t )  in (3.4), 
interchanging integrations, and doing the t integrals, we obtain (3.5). 

Proposition 5. Let f; uf(u) be bounded, let f have a finite number of changes of sign 
in any finite interval, and assume that 

exists. Then f(f) exists. 



3516 H Nelrcka-Ficek and J Tarski 

Before proving this proposition we make two comments. First, example 5 of 0 4 is 
one where the hypothesis is fulfilled except for boundedness of uf( U), and where f ( f )  
does not exist. Second, the hypothesis regarding the changes of sign o f f  can be 
dropped, and the application of part ( a 2 )  of lemma 3 can be bypassed, if we assume 
in addition that the following limits exist for V a  E RI: 

Proo$ Let us first show that the limits in (3.8) exist and are equal. For definiteness 
we will assume x > a 3 0. Then 

lim J du exp(-u2//2x)f( U )  = lim J duf(  U )  
x-= -% - X  

5 

- a ) * / 2 x ] f ( u ) .  

(3.9) 

Next, lemma 4 and a compactness argument show that for a given a,  one has a 
non-tangential limit as b + 0, necessarily equal to the lim(x + 00) above. 

4. Counterexamples 

It should be useful to have some examples where the integral I, or E behaves in a way 
which differs from what may be expected by a naive comparison with L ,  convergence. 
Of the following examples, the first three are new, and the last two are included for 
completeness. 

4.1. Converse to Fubini’s theorem 

If f ; (u , ) ,  j = 1 ,  . . . , n, are integrable for 4 then so is II,f;(u,), but the converse does 
not hold in general. L e t f =  1. Then T(b, a;f) = (2r r /b )”* ,  independently of a. Con- 
sider Pz( U )  = i ( 3 u 2 -  l ) ,  the second Legendre polynomial. Let g (  u )  = P 2 ( u )  for -1 < 
U < 1 and 0 otherwise. Expansion of the exponential then yields 

T ( b , a ; g ) = - & b + 6 ( b 2 )  (4.1) 

and the contribution proportional to ba  vanishes by symmetry. Therefore, for 
F (  U,, u2, u3)  =f( u , ) f (  u2)g(  u3) ,  we have f( F )  = - 4 ~ /  15, while the individual factors 
are not all integrable for 1 

4.2. Invariance upon linear transformations 

The integral or I, is clearly invariant under an orthogonal transformation of R k ,  but 
this conclusion does not extend to a general linear transformation. Indeed, taking f; 
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and consider the transformations U + U, U +  u*u, with the w, left unchanged. Note 
that the Jacobian equals unity. Let Go be the transformed function: 

Go(w1, * ’ .  , w4, U, U )  =f(w,).. . f ( w , ) g ( u ) g ( u +  U). 

I( Go) = 4 f (  G). 

(4.3) 

(4.4) 

It is trivial that I ( G )  = [ T ( F ) ] ’ ,  but the integrals of G and of Go differ: 

To obtain this evaluation, we express the integral of Go in terms of the variables U 
and y = U + U. One can check that when the cut-off factor exp(-fb . . .) is expanded, 
only the term proportional to u2y2 will contribute to T(Go), and only the term 
proportional to u2u2 will contribute to F( G). Thus, there will be equal contributions 
from 2u’(y - U)’ and from 2u2u2, but there will be an extra contribution to T( Go) from 

Equation (4.4) expresses the non-invariance of 7 upon linear transformations. This 
u4 = ( y  - u ) ~  = 6y’u2 + . . . . 
fact has the following consequence. 

Proposition 6. The definition of I ( f ) ,  given in Tarski (1979), and the definition given 
in It6 (1966) of the corresponding integral, are inequivalent. 

Proof: The definition of It6 (1966) implies invariance under non-singular linear trans- 
formations (subject to trace conditions). Consequently, G and Go, when modified by 
the factor exp[-;iK([, 5)] to cancel the original exp[iiK([, [)I, are not integrable in the 
sense of It6 (1966). However, they are integrable in the sense of Tarski (1979). 

In fact, in the finite-dimensional case, we can make the following stronger statement: 
the definition of Buchholz and Tarski (1976) (a variant of that in It6 (1966)) is more 
restrictive than the definition of equations (1.2)-( 1 .5) .  

4.3. Interchangeability of limits 

In view of the subtle limiting procedure for we expect that counterexamples to 
interchanging limits and integration should be easy to construct. We give here a simple 
example. Take 

f,(u) = c, exp(fis,u2). (4.5) 
If c, + 0 with s, = constant, then f(f,) + 0, while if s, + 0 with c, = constant, then f(f,) 
diverges. It is clear that by letting c, + 0 and s, + 0 in a suitable way, any value for 
the limit of T(f,) can be obtained. If this value is not equal to 0, then 

n-oC lim I(f,) + f(limf,) = T ( o )  = 0. (4.6) 

Note that If,(u)I S max Ic,~, which is an integrable function for I (of (1.3)). 

4.4. Boundedness by an integrable function and integrability 

The following example was given in Tarski (1975), with reference to the integrals 
Z b 9 ” ( f )  and I ( f )  on R ’ .  We start with F ( u )  = u2, which is integrable for I. Let K > 0, 
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and for the real part of I replace exp(fiKu’) by COS(;KU’). Let U, > 0 be defined by 
I K U ,  = 2n +& for n integral and n 3 0. Let f( U )  = 0 for U < U,,, and let f( U )  = U’, for 
U, U’. However, one cycle of C O S ( ~ K U ’ )  yields a contribution 
whose positive part is larger than the negative, and the excess is sufficient to cause 
I ( f )  to diverge. (A formal proof depends on verifying that the RHS of (3.2) diverges, 
and on adapting lemma 3, part ( a , ) ,  to infinite values of integrals.) 

1 2  

U < u , + ~ .  Then If(u)l 

4.5. Invariance under translations 

This condition is equivalent to having the limit of f( b, a ;f) independent of a ,  as b + 0. 
However, an a-dependent limit is obtained for the functionf(u) = &(U) on RI, where 
&(U) = *l for U SO. This example is fully discussed in Tarski (1980). 
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Note added. The extension of a to the complex region, as in 5 2, suggests that the following (non-tangential) 
limits might also be of interest: 

lim 1 dku exp[-fb(u - a -ip, u - a - i p ) y ( u )  
b-0 

for a, p E R k .  (Here the scalar product is symmetric, and not Hermitian.) In this note we will elaborate 
on such integrals and limits. 

We recall that in the real case ( p  = O), independence of a is equivalent to translational invariance, and 
on the physical side it allows a derivation of the Schwinger action principle (Tarski 1979, 1980). We will 
see that independence of a and p in the limit similarly is equivalent to invariance with respect to complex 
translations. However, it is not clear if such additional invariance has any new physical significance. 

As we indicated earlier, we may regard J in ( N l )  as an element of Yi:S(Rk)’.  Since functions of 
Y i $ S ( R k )  extend to entire functions on C‘ (Gelfand and Shilov 19681, such a conclusion applies also to 
distributions in YI$:(R ‘)’. One way of expressing the continuation depends on Fourier transformation (cf 
Gelfand and Shilov 1968): 

c 

f( U +iu)  = ( 2 ~ ) - ~ ”  I dkp exp[-ip( u + i v ) u (  p ) .  (N2)  
J 

(Note: f =  $$’ implies ? E  Y;$‘ ,  implies exp(pu)fe  si!:’, implies f ( u + i u )  E Yi$’ . )  It then follows 
directly that 

dku exp[-fb(u - a  -ip, U - a  - ip) l f (u)  = d‘u exp[ -fb(u,  u ) l f ( u  +(I + ip). (N3) 5 J 
These considerations lead to the following: 

Proposition 7. Assume that r ( f )  exists. Then the non-tangential limit b+O in ( N l )  is independent of a 
and p if and only if r ( f ( u + i p ) )  exists and is equal to I(/) for V p  E R k .  (Equality with T ( / ( u  + a + i p ) )  
then follows.) The independence and the invariance are fulfilled in particular for: (i) f~ L , ( R k ) ,  (ii) 
functions f which are of the form exp[firc(u, U)] times the Fourier transform of a distribution (cf below), 
(iii) functions f which are of the form exp[firc(u, U)] times the restriction to R k  of an entire function of 
order less than 2. In case (iii), f ( u + i u )  given by (N2) agrees with the result obtained by the usual 
(function-theoretic) analytic continuation. 
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Proox The equivalence of indepndence and invariance follows directly from (N3),  and case (i) is trivial. 
Next, the last assertion (about f ( u + i u ) )  follows by first interpreting (N3) in terms of contour integration 
(this shows that both methods of continuation make (N3) valid), and second, by observing that (N3) remains 
valid if, in place of exp[-fb(u, U)], we use an arbitrary function in Y i $ : ( R k )  (cf Gelfand and Shilov 1968, 
especially 5 5  2, 7 and 9). Case ( i i i )  then follows by contour integration (cf Buchholz and Tarski 1976). 

There remains case f i i ) .  The relevant functions are of the form (Berg and Tarski 1981) 

f (u)=exp[f ix(u,  u)](-l)" dp(w)(a/dw' l ) . .  . ( d / d w J n )  exp[i(w, U)] ( M a )  J 
where 

d /p l (w)( l  +iw'Il)  . . . (1 + / w J n ( )  <CO. (N4b) 

We now recall that the proof for the case p = O  proceeds by first integrating exp[i(w, U)] and the Gaussian 
weights with respect to U. The operators d/dwJe can be interchanged with U integration for Re b > 0. We 
next obtain a bound on the expression exp[f(iK - b)-'(w, w - 2iba)l. This bound allows the interchange of 
lim( b + 0) with the w integration, in view of (N4b) and the bounded convergence theorem. 

5 
In the present case the foregoing expression becomes 

exp[$(iK - bj-'( w, w - 2iba + Zbp)]. (N5) 

Here K and b are allowed to be complex. The needed bound may depend on K, a and p, but not on w E R k  
nor on b. However, for a non-tangential limit we suppose 

(N6) 

(We allow here arbitrary c > 0, and assume some B > 0. )  We recall that Im K 2 0 and easily verify that (with 
constant > O j  

iIm b( s c Re b s B. 

(exp[f(iK - b)-'(w, w)]l s exp[-(Re b)ll wl/'(constant)] 

lexp[f(irc - b)-'(w, -2ibo +2bp)1/ S exp[(Re b)ll wi~(constant)]. 

(N7a)  

(N7b) 

It follows that the product (N5) has a bound independent of b (but dependent on B and c ) .  This enables 
the argument of Berg and Tarski (19811, as outlined above, to go through. 

We remark that if p = 0, then it is not necessary to make the restriction IIm bl 
also give the desired result. 

c Re b, and tangential limits 
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